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Summary. Estimating biomarker-index accuracy when only imperfect reference-test information is available is usually per-
formed under the assumption of conditional independence between the biomarker and imperfect reference-test values. We
propose to define a latent normally-distributed tolerance-variable underlying the observed dichotomous imperfect reference-
test results. Subsequently, we construct a Bayesian latent-class model based on the joint multivariate normal distribution of the
latent tolerance and biomarker values, conditional on latent true disease status, which allows accounting for conditional depen-
dence. The accuracy of the continuous biomarker-index is quantified by the AUC of the optimal linear biomarker-combination.
Model performance is evaluated by using a simulation study and two sets of data of Alzheimer’s disease patients (one from the
memory-clinic-based Amsterdam Dementia Cohort and one from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database). Simulation results indicate adequate model performance and bias in estimates of the diagnostic-accuracy mea-
sures when the assumption of conditional independence is used when, in fact, it is incorrect. In the considered case studies,
conditional dependence between some of the biomarkers and the imperfect reference-test is detected. However, making the
conditional independence assumption does not lead to any marked differences in the estimates of diagnostic accuracy.
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1. Introduction

An important issue in the development of diagnostic tests is
the availability of the correct case and control labels. How-
ever, sometimes such labels based on a gold standard (GS)
reference-test may not be available or useful. For example,
in the context of dementia or Alzheimer’s disease (AD), only
post-mortem pathological confirmation on brain tissue can
be regarded as a GS reference-test (Scheltens and Rockwood,
2011); obviously, the confirmation is useless from a diagnostic
perspective.

Hence, case and control labels for diagnostic-test develop-
ment may be based on the result of an imperfect reference-
test, which may misclassify cases and controls. If the
misclassification is ignored in the development of a diagnostic
test, the estimates of the parameters describing its accuracy
may be severely biased (Lu et al., 2010).

To take into account the absence of a gold standard when
assessing the accuracy of diagnostic tests, latent-class models
with two latent classes have been proposed (Rindskopf and
Rindskopf, 1986). The models allow inclusion of the imperfect
reference-test information in the form of covariate informa-
tion, but require certain strict identifiability restrictions.

Preferably, one would like to weigh the information present
in the results of an imperfect reference-test according to the
prior knowledge about the accuracy of the test. For exam-
ple, in AD-biomarker research, clinical diagnosis of AD can
be regarded as an imperfect reference-test. Reports about
the accuracy of the diagnosis are available in the literature

(Wollman and Prohovnik, 2004; Beach et al., 2012). Using this
information might be instrumental in obtaining more reliable
estimates of biomarker accuracy and in mitigating issues of
identifiability. This is possible within the Bayesian framework.

In case a GS reference-test is available, a fully paramet-
ric Bayesian method to estimate the accuracy of univariate
continuous diagnostic tests was introduced by O’Malley et al.
(2001). For the case of an imperfect reference-test, several
Bayesian models were proposed, including Bayesian latent-
class mixture models. In particular, Wang et al. (2006)
developed a Bayesian latent-class mixture model for a sin-
gle continuous test, which considers use of a dichotomous
imperfect reference-test.

Often, diagnostic tests are developed based on biomarkers.
A biomarker is “a characteristic that is objectively measured
and evaluated as an indicator of normal biologic processes,
pathogenic processes, or pharmacologic responses to thera-
peutic interventions” (Biomarkers Definition Working Group,
2001). An often-used method to summarize properties of a
continuous biomarker-based diagnostic test is the area under
the receiver operating characteristic curve (AUC) (Zou et al.,
2012).

Combining continuous biomarkers has been shown to
increase the diagnostic accuracy over considering biomarkers
alone. In particular, such a combination can be constructed
when maximizing the AUC by using a model-free approach
(Huang, Qin, and Fang, 2011), a discriminant-function
approach (O’Malley and Zou, 2006), or a fully parametric
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approach (Su and Liu, 1993). Yu, Zhou, and Bandinelli (2011)
developed a Bayesian latent-class mixture model to estimate
the optimal linear-combination of multiple continuous tests.

All of the aforementioned Bayesian methods of estima-
tion of the diagnostic-test accuracy of continuous biomarkers
in the presence of an imperfect reference-test are based on
the “conditional independence” assumption, i.e., they assume
that, conditionally on the true disease status, the misclassifi-
cation error of the reference-test is independent of the error
of the candidate diagnostic test. As the methods do not allow
formal testing of this assumption, they have to rely on heuris-
tic arguments to enforce its plausibility.

In the present article, we propose a Bayesian latent-class
mixture model to develop a diagnostic test based on a lin-
ear combination of multiple continuous biomarkers when an
imperfect reference-test is available. Moreover, we allow for
conditional dependence between the continuous biomarkers
and the imperfect reference-test. On one hand, our model is
an extension of the approaches developed by O’Malley and
Zou (2006) for the case of a GS reference-test and by Yu,
Zhou, and Bandinelli (2011) for the case when no reference
test is available. On the other hand, we extend the model
proposed by Wang et al. (2006) by developing an optimal
linear-combination of continuous tests/biomarkers maximiz-
ing the AUC of the combination. Finally, we show that
the proposed model could prove an important tool in AD-
biomarker research, where admitting the imperfect nature
of clinical diagnosis could be essential in obtaining reliable
estimates of biomarkers’ diagnostic accuracy.

2. Methods

2.1. Model

In the remainder of the article, the following assumptions and
notation will be used. The K-dimensional vector y contains
observations of K biomarkers. Conditional on the true disease
status D (D = 0 for controls and D = 1 for cases), y is assumed
to be normally distributed:

y|D=d ∼ NK

(
μYd

, �d

)
, (1)

with μY d and �d denoting the underlying biomarker mean-
vector and variance–covariance matrix, respectively. Under
the assumption of normality, it can be shown that the linear
combination of biomarkers with maximal AUC has coefficients
a ∝ (�0 + �1)

−1
(
μY1 − μY0

)
(Su and Liu, 1993). The AUC of

this linear combination is then

AUCa = �

(√(
μY1 − μY0

)T
(�0 + �1)

−1
(
μY1 − μY0

))
, (2)

where �(·) represents the cumulative standard-normal distri-
bution function. From equation (2) it can be seen that AUCa

is a rather complex function of the biomarker distribution
parameters.

Assume next that only imperfect information on the true
disease status is available in the form of an imperfect
reference-test T . In other words, D is not observed, but is
considered a latent variable, from now on denoted by D̃. We

assume that

T | D̃ = d ∼ Bern (πd) , (3)

π0 = P
(
T = 1

∣∣ D̃ = 0
) ≡ 1 − SpT ,

π1 = P
(
T = 1

∣∣ D̃ = 1
) ≡ SeT ,

where SpT and SeT denote, respectively, the specificity and
sensitivity of the imperfect reference T . A consequence of not
observing true disease status D̃ is that estimation of the linear
combination coefficients a is not straightforward. Toward this
end, we propose a Bayesian latent-class mixture model.

2.2. Likelihood

The full-data likelihood P(y, T, D̃) can be decomposed as fol-
lows:

P
(
y, T, D̃

) = P
(
T

∣∣ y, D̃
) × P

(
y

∣∣ D̃
) × P

(
D̃

)
,

where P
(
y

∣∣ D̃
)

is the density function of the K-variate

normal distribution given in equation (1); P
(
D̃

)
is the prob-

ability of the latent disease status, with P
(
D̃ = 1

) ≡ θ, the

prevalence of disease; and P
(
T

∣∣ y, D̃
)

is the probability of
the result of the imperfect reference-test T conditional on
biomarker values y and D̃. If, conditionally on D̃, y and
T are independent, then P

(
T

∣∣ y, D̃
) ≡ P

(
T

∣∣ D̃
)

defined by
equation (3).

To allow dependence between the imperfect reference-test
T and biomarkers y, we propose to model the dependence
through a latent continuous tolerance-variable T̃ , underlying
T . In particular, we assume that T is the result of dichotomiz-
ing T̃ , with

T̃ | D̃ = d ∼ N
(
μT̃d

, 1
)

.

Note that, without loss of generality, the variance of the tol-
erance distribution can be fixed at 1 (see, e.g., Renard et al.,
2002).

Consequently, π0 and π1 from equation (3) are expressed
as π0 = 1 − �

(−μT̃0

)
and π1 = 1 − �

(−μT̃1

)
, where μT̃d

denotes the mean of T̃ for the true disease group d.
By considering the joint-distribution of T̃ and y, their corre-

lation can be introduced directly. Assume that, conditionally
on D̃, T̃ and y are jointly normally distributed:(

T̃

y

)∣∣∣∣ D̃ = d ∼ NK+1

((
μT̃d

μYd

)
, �d

)
(4)

with �d =
(

1 τT
d

τd �d

)
and τd = (ρ1,dσ1,d , . . . , ρK,dσK,d)

T
.

In equation (4), the covariance of T̃ and the k-th biomarker
is expressed as the product of the correlation coefficient ρk,d

and biomarker’s standard deviation σk,d .
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By using the joint normal distribution in equation (4), it
follows that

T |y, D̃ = d ∼ Bern (πd(y)) , (5)

where

P
(
T = 1|y, D̃ = 0

) = π0(y)

= 1 − �

(
−μT̃0

+ ρT
0�−1

0

(
y − μY0

)√
1 − ρT

0�−1
0 ρ0

)
= 1 − SpT (y),

P
(
T = 1|y, D̃ = 1

) = π1(y)

= 1 − �

(
−μT̃1

+ ρT
1�−1

1

(
y − μY1

)√
1 − ρT

1�−1
1 ρ1

)
= SeT (y).

From equation (5) it follows that the imperfect reference-
test T has different sensitivity SeT (y) and specificity SpT (y)
for each possible value y, which introduces the dependence
between T and y conditional on D̃.

Combining all the developments, we arrive at the following
full-data likelihood function for a data set including observa-
tions for N individuals (indexed by i):

L

(
μY0 , μY1 , �0, �1, μT̃0

, μT̃1
, ρ0, ρ1, θ|Y , t, d̃

)
=

N∏
i=1

(
θ
{
1 − SeT (yi)

}(1−ti){
SeT (yi)

}ti 1√
(2π)K |�1|

exp

{
−1

2
(yi − μY1)

T
�−1

1 (yi − μY1)
})di

×
(

(1 − θ)
{
1 − Sp(yi)

}ti
{
SpT (yi)

}(1−ti) 1√
(2π)K |�0|

exp

{
−1

2
(yi − μY0)

T
�−1

0 (yi − μY0)
})(1−di)

,

where d̃ = (d1, . . . ,dN)′ and t = (t1, . . . ,tN)
′

are the vectors
containing, respectively, the true (unobserved) disease status
indicators and observed reference-test results for the N indi-
viduals, while Y is the N×K matrix containing the observed
biomarker values. The parameters of interest are μY 0, μY 1,

�0, and �1, because together they define AUCa, as indicated
in equation (2).

2.3. Priors

Non-identifiability is an important issue for mixture models
(McLachlen and Peel, 2004), as well as for the estimation
of accuracy of imperfect diagnostic-tests (Dendukuri and
Joseph, 2001). We propose prior distributions which include
appropriate restrictions that mitigate non-identifiability
while allowing introduction of available prior information.
Whenever feasible, flat priors are proposed. Table 1 of
Supplementary Materials summarizes all proposed prior
distributions for the parameters included in the model. Non-
standard or non-flat priors are discussed below.

For the prevalence parameter θ, a uniform distribution
restricted between 1/N and 1 − 1/N is proposed. The restric-
tion assumes that the data contain at least one control and
one case. It helps to resolve convergence issues when MCMC
algorithms get stuck in a one-component solution instead of a
mixture, a possible result of model non-identifiability (Robert
and Soubiran, 1993).

To allow a more controlled way of introducing prior
biomarker-accuracy information, a prior distribution is pro-
posed for δ, which is defined as follows:

δ = Q
(
μY1−μY0

)
with Q

′
Q = (�0 + �1)

−1
,

where Q is an upper-triangular matrix. By considering a flat
normal prior for μY0 and a multivariate normal prior for δ, it
is possible to control the resulting prior for the AUC of the
linear combination of the biomarkers. In particular, under the
assumption that δ ∼ NK(κ, �) and κ = 0, different choices for
the standard deviations and correlations defining � will lead
to AUCa-priors expressing different amounts of prior informa-
tion. Examples of so-constructed AUCa-priors are presented
in Appendix A of Supplementary Materials. The prior distri-
bution for μY1 is implied by the choice of priors for μY0 , �0,
�1, and δ.

We follow the proposal of Wei and Higgins (2013) to
construct flat prior-distributions for the variance–covariance
matrices. In particular, the overall (K+1)×(K+1) variance–
covariance matrix �d is decomposed as �d = SdRdSd , where

Sd and Rd are, respectively, the diagonal matrix of stan-
dard deviations and the correlation matrix for the disease
group d. Additionally, Rd is expressed as Rd = LdL

T
d , where

Ld is a lower-triangular matrix. Subsequently, wide uniform-
distributions are put directly on the biomarker standard
deviations σk,d included in Sd . Additionally, flat priors are
put on K of the ((K + 1)2 − (K + 1))/2 non-zero off-diagonal
elements of the Cholesky decomposition-factor Ld of Rd (see
Table 1 of Supplementary Materials).

The prior distributions for μT̃0
and μT̃1

are derived from
the prior distributions for SpT and SeT . This way, restrictions
can be enforced on μT̃0

and μT̃1
leading to a sensible inter-

pretation of SpT and SeT . In the case of case-control data, a
sensible choice for SpT and SeT is to use independent Beta-
distributions restricted to the (0.5, 1] interval. Based on the
relationship defined in equation (3), this leads to the following
prior distributions (φ(·) denotes the standard-normal density
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function):

SpT ∼ Beta (a, b) trunc[0.51, 1]

fμ
T̃0

(μT̃0
) =

⎧⎨⎩
1

B(a, b)

(
�

(−μT̃0

))(a−1)(
1 − �

(−μT̃0

))(b−1) ∣∣−φ
(−μT̃0

)∣∣ if μT̃0
∈ (−∞, −� (0.51)]

0 otherwise

SeT ∼ Beta (c, d) trunc[0.51, 1]

fμ
T̃1

(μT̃1
) =

⎧⎨⎩
1

B(c, d)

(
�

(
μT̃1

))(c−1)(
1 − �

(
μT̃1

))(d−1) ∣∣φ (
μT̃1

)∣∣ if μT̃1
∈ [� (0.51) , +∞)

0 otherwise

Other restrictions on the prior distributions of SpT and SeT

could be considered as well. Jones et al. (2010) propose to
assume that SpT + SeT > 1 to overcome non-identifiability.
This restriction allows SpT or SeT to be smaller than 0.5, but
implies a dependence between SpT and SeT which is not trivial
to implement. For this reason, we limit ourselves to assum-
ing that SpT and SeT are both strictly larger than 0.5. This
restriction resolves the label-switching problem observed for
mixture models (McLachlen and Peel, 2004) and mitigates the
over-parameterization with multiple imperfect reference-tests
(Dendukuri and Joseph, 2001), two consequences of model
non-identifiability.

2.4. Application

To investigate the performance of the model, we carried out
a simulation study and applied the model to two AD data
sets: the VUmc (VU University Medical Center) data set,
which consists of patients from the memory-clinic-based Ams-
terdam Dementia Cohort (see Figure 1), and the publically
available data obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu) (see
Figure 2). In these studies, cerebro-spinal-fluid (CSF) levels of
Aβ1-42, Total-tau, and P-tau181p were collected for all indi-
viduals, as well as a clinical diagnosis of AD. More detailed
information about the data sets can be found in Appendix B
of Supplementary Materials.

2.4.1. Simulation study. The goal of the simulation study
was to show adequate model performance in the conditional
dependence case and, subsequently, to investigate the impact
of violating the conditional independence assumption. In par-
ticular, 400 data sets of size 600 were simulated under the
conditional dependence setting. The underlying parameter
settings are summarized in Appendix C of Supplementary
Materials. They yielded biomarker data (for K = 3 biomark-
ers) with underlying true AUCa of 0.787 and an imperfect
reference-test with SeT = SpT = 0.85. The underlying latent
tolerance and biomarkers’ correlation coefficients were set
as follows: ρ1,0 = ρ1,1 = 0, ρ2,0 = ρ2,1 = 0.7, and ρ3,0 = ρ3,1 =
0.3. An example of a randomly selected simulation data set
under the conditional dependence setting is shown in Figure
1 of Supplementary Materials.

2.4.2. Analysis settings. The proposed model allowing for
conditional dependence was fitted to the simulated data and
to the two case studies. The model assuming conditional inde-
pendence was fitted to the data as well. The latter model was

obtained by fixing the correlation parameters ρk,d between
the latent continuous tolerance-variable T̃ and biomarkers
to be equal to zero. Prior distributions were specified as in
Table 1 of Supplementary Materials. For the simulation study,
parameters a, b, c, and d of the SpT and SeT Beta prior
distributions were all set to 1, leading to flat uniform-prior
information. For the two case-study data examples, the Beta-
prior parameters for SpT and SeT were set so that they allowed
capturing the available information from literature. In par-
ticular, Beta(a = 2.69, b = 1.99) and Beta(c = 4.15, d = 2.54)
distributions were used, truncated to the (0.51, 1] interval.
The prior for AUCa was varied to investigate sensitivity of the
results to the choice of the prior distribution. In the “opti-
mistic” case, the prior was defined by setting κ = (0, 0, 0)T

and defining � by standard deviations equal to 0.7 and corre-
lation coefficients set to 0.6. As a result, a prior distribution
disfavoring small values of AUCa was obtained (see panel a of
Figure 3). A “conservative” prior, favoring moderate values of
AUCa (see panel c of Figure 3), was constructed by setting
κ = (0, 0, 0)T and defining � by standard deviations equal to
0.5 and correlation coefficients equal to 0.3.

In the simulation study, to compensate for the lack of prior
information for SpT and SeT , only the “optimistic” AUCa prior
was used together with a more restrictive U(0.1, 0.9) prior for
the prevalence parameter θ.

For both the simulation study and the real-data analyses,
10,000 MCMC samples were retained after a burn-in of 10,000
samples. In both cases, five independent MCMC chains were
used. After fitting the models, general diagnostic tools were
applied to the results of all 400 data sets as part of the results-
analyzing R-script. Convergence over chains was investigated
by the Gelman–Rubin convergence index, for which a cut-off
value of 1.1 was applied (Gelman and Rubin, 1992). To ensure
that at least 3 out of 5 chains converged, chain-by-chain con-
vergence was monitored by using the Geweke convergence
criterion (Geweke, 1992).

The models were fitted by using OpenBUGS 3.2.1 (Lunn
et al., 2009). The code is presented in Appendix D of Supple-
mentary Materials. Results were analyzed and summarized
using R 3.0.1 (x64) (R Core Team, 2013). The R-package
R2OpenBUGS (Sturtz, Ligges, and Gelman, 2005) was used
as an interface between R and OpenBUGS. For the proposed
conditional-dependence model, fitting times were equal to 20 h
for a single simulated and the VUmc data set, and 15 h for
the ADNI-data, on a 64-bit, 2.8 GHz, 8 GB RAM machine. For
the purpose of the manuscript, all simulations and analyses
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Figure 1. Observed total tau, Aβ1-42, and P-tau181p values from the VUmc data set. Clinically diagnosed controls are
indicated by the gray histograms, clinical cases by the black histograms. (a) Raw values. (b) Log-transformed values of Total
tau and P-tau181p-values, raw values for Aβ1-42.

were run on the infrastructure provided by the VSC (Flemish
Supercomputer Center).

3. Results

The results of the simulation study are summarized in Table 1.
For the proposed conditional-dependence model (the third
column of the table), the mean of the 400 posterior medians
is very close to the true underlying values for all parameters.

The fourth column of Table 1 presents the results for the
conditional-independence model. It can be concluded that, on
average, AUCa (true value of 0.787), SpT (true value of 0.85),
and SeT (true value of 0.85), are substantially overestimated
with mean posterior-medians equal to 0.892, 0.995, and 0.982,
respectively.

Table 2 presents the medians of the posterior distributions
obtained for the VUmc data, together with their posterior
standard deviations and 95%-credible intervals. The medi-
ans of the AUCa distributions are similar irrespectively of
the model (conditional-dependence or independence) and the
AUCa-prior (“conservative” or “optimistic”). Hence, in what
follows, only the results for the “optimistic” AUCa-prior are
discussed.

Allowing for conditional dependence leads to posterior
median SpT and SeT estimates of 0.823 and 0.940, respectively,
with respective 95%-credible intervals equal to [0.768;0.870]

and [0.915;0.960]. The posterior distribution for θ has a
median of 0.706 with a 95%-credible interval of [0.672;0.739].
The posterior distributions, shown in Appendix E of Sup-
plementary Materials, indicate that the assumed prior
distributions for SpT , SeT , and θ are well updated by the data,
suggesting a successful mitigation of model non-identifiability
(Garrett and Zeger, 2000).

Moreover, the results show dependence between the clini-
cal diagnosis of AD and Total-tau: the 95%-credible intervals
for the correlation between the latent tolerance and Total-
tau in the control (ρ1,0) and AD (ρ1,1) groups are equal to
[0.156;0.530] and [0.068;0.451], respectively, and they both
exclude the value of zero. Despite the correlation between
the latent tolerance and Total-tau, no important difference in
the posterior medians of AUCa is found for the conditional-
dependence and conditional-independence models.

Table 3 presents the results for the ADNI data. In this case,
the resulting MCMC-samples for the conditional-dependence
model defined by using the “conservative” AUCa-prior require
some attention. Even after 200,000 iterations, the OpenBUGS
MCMC-algorithms do not seem to have converged (Appendix
F of Supplementary Materials). This may be taken as imply-
ing that the use of the “conservative” prior for AUCa does
not provide enough information to overcome potential non-
identifiability of the model given the limited size of the data
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Figure 2. Observed total tau, Aβ1-42, and P-tau181p values from the ADNI data set. Clinically diagnosed controls are
indicated by the gray histograms, clinical cases by the black histograms. a. Raw values. (b) Log-transformed values of Total
tau and P-tau181p-values, raw values for Aβ1-42.

set. For this reason, the data were also analyzed with a model
using an “intermediate” AUCa-prior (see Panel b of Figure 3).
Table 3 contains the results obtained with the “optimistic,”
as well as the “intermediate” AUCa-prior distribution.

No difference between the results obtained with the “inter-
mediate” and “optimistic” AUCa-prior were observed as the

95% credible intervals show substantial overlap. Therefore,
only the results from the “optimistic” AUCa-prior setting
will be discussed. The results obtained for the proposed
conditional-dependence model do not indicate any correlation
between the biomarkers and the latent tolerance underlying
the AD diagnosis. The posterior AUCa distributions for the
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Figure 3. Considered AUCa-prior distributions. (a) “Optimistic” AUCa-prior distribution. (b) “Intermediate” AUCa-prior
distribution. (c) “Conservative” AUCa-prior distribution.
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Table 1
Mean of posterior medians, (standard deviations) and [empirical 95%-confidence intervals] for the simulated data (400 data
sets of size N=600). Results are shown for both the conditional-dependence and conditional-independence model considering
the “optimistic” AUCa-prior distribution. Correlation coefficients: ρ1,0, Total-tau in the control group; ρ1,1, Total-tau in the

AD group; ρ2,0, Aβ1-42 in the control group; ρ2,1, Aβ1-42 in the AD group; ρ3,0, P-tau181p in the control group; ρ3,1,
P-tau181p in the AD group.

Model

Parameter True Conditional Dep. Conditional Ind.

AUCa 0.787 0.777 (0.023) [0.728;0.819] 0.892 (0.011) [0.869; 0.912]
SeT 0.85 0.834 (0.031) [0.770;0.894] 0.982 (0.013) [0.940; 0.993]
SpT 0.85 0.837 (0.027) [0.782;0.887] 0.995 (0.001) [0.993; 0.996]
θ 0.5 0.505 (0.023) [0.458;0.554] 0.510 (0.017) [0.479; 0.542]
ρ0,1 0 0.022 (0.090) [-0.146;0.213] 0
ρ0,2 0.7 0.702 (0.046) [0.608;0.782] 0
ρ0,3 0.3 0.318 (0.079) [0.165;0.470] 0
ρ1,1 0 0.020 (0.088) [-0.147;0.197] 0
ρ1,2 0.7 0.705 (0.052) [0.596;0.795] 0
ρ1,3 0.3 0.310 (0.078) [0.158;0.457] 0

conditional-dependence and conditional-independence mod-
els show only a slight difference. In particular, the posterior
medians of AUCa are equal to 0.979 and 0.983, respectively,
with the respective 95% credible intervals of [0.939;0.994] and
[0.961;0.994].

To further investigate applicability of the model to the case
of data structures similar to the ADNI data, an additional

simulation setting was considered (Appendix G of Supplemen-
tary Materials). In particular, the underlying true parameter
values were chosen so that a bi-modal distribution would be
observed, as is the case for the ADNI data (Figure 2). Results
from this additional simulation study show that also for
bi-modal observed data, the conditional-dependence model
provides correct estimates of the true parameter values.

Table 2
Posterior medians, (standard deviations) and [95%-credible intervals] for VUmc data. In the respective columns results are

shown for the conditional-dependence and conditional-independence models for both the ‘conservative’ (Cons.) and
‘optimistic’ (Opt.) AUCa-prior distribution. Correlation coefficients: ρ1,0, Total-tau in the control group; ρ1,1, Total-tau in
the AD group; ρ2,0, Aβ1-42 in the control group; ρ2,1, Aβ1-42 in the AD group; ρ3,0, P-tau181p in the control group; ρ3,1,

P-tau181p in the AD group.

Conditional Dep. Conditional Dep. Conditional Ind. Conditional Ind.
Parameter ( Cons. AUC) (Opt. AUC) (Cons. AUC) (Opt. AUC)

AUCa 0.996 (0.002) 0.997 (0.001) 0.995 (0.002) 0.995 (0.002)
[0.992;0.998] [0.993;0.998] [0.990;0.997] [0.991;0.998]

SeT 0.940 (0.012) 0.940 (0.012) 0.955 (0.010) 0.954 (0.010)
[0.915;0.960] [0.915;0.960] [0.934;0.973] [0.934;0.971]

SpT 0.818 (0.027) 0.823 (0.026) 0.850 (0.024) 0.850 (0.024)
[0.762;0.868] [0.768;0.870] [0.799;0.894] [0.799;0.894]

θ 0.705 (0.017) 0.706 (0.017) 0.700 (0.016) 0.701 (0.016)
[0.671;0.738] [0.672;0.739] [0.668;0.732] [0.668;0.732]

ρ1,0 0.366 (0.091) 0.358 (0.093) 0 0
[0.176;0.520] [0.156;0.530]

ρ2,0 0.110 (0.103) 0.104 (0.103) 0 0
[−0.100; 0.306] [−0.103; 0.301]

ρ3,0 0.034 (0.095) 0.030 (0.100) 0 0
[−0.154; 0.206] [−0.171; 0.235]

ρ1,1 0.293 (0.091) 0.280 (0.097) 0 0
[0.102;0.454] [0.068;0.451]

ρ2,1 0.186 (0.093) 0.186 (0.092) 0 0
[−0.009; 0.353] [−0.007; 0.356]

ρ3,1 0.199 (0.091) 0.186 (0.098) 0 0
[0.014;0.366] [−0.018; 0.366]



Biomarker Accuracy Estimation Allowing for Conditional Dependence 653

Table 3
Posterior medians, (standard deviations) and [95%-credible intervals] for ADNI data. Results are shown for both the
conditional-dependence and conditional-independence models using the ‘intermediate’ (Int.) and ‘optimistic’ (Opt.)

AUCa-prior distribution. Correlation coefficients: ρ1,0, Total-tau in the control group; ρ1,1, Total-tau in the AD group; ρ2,0,
Aβ1-42 in the control group; ρ2,1, Aβ1-42 in the AD group; ρ3,0, P-tau181p in the control group; ρ3,1, P-tau181p in the AD

group.

Conditional Dep. Conditional Dep. Conditional Ind. Conditional Ind.
Parameter (Int. AUC) (Opt. AUC) (Int. AUC) (Opt. AUC)

AUCa 0.976 (0.022) 0.979 (0.014) 0.982 (0.009) 0.983 (0.009)
[0.912;0.994] [0.939;0.994] [0.958;0.993] [0.961;0.994]

SeT 0.805 (0.061) 0.808 (0.056) 0.818 (0.044) 0.818 (0.044)
[0.669;0.906] [0.688;0.905] [0.726;0.898] [0.724;0.896]

SpT 0.829 (0.077) 0.835 (0.061) 0.880 (0.037) 0.879 (0.037)
[0.627;0.940] [0.691;0.930] [0.798;0.942] [0.798;0.941]

θ 0.463 (0.091) 0.466 (0.071) 0.499 (0.043) 0.498 (0.043)
[0.230;0.614] [0.317;0.597] [0.413;0.582] [0.414;0.582]

ρ1,0 0.142 (0.225) 0.121 (0.185) 0 0
[−0.297; 0.549] [−0.264; 0.459]

ρ2,0 0.295 (0.250) 0.277 (0.223) 0 0
[−0.323; 0.637] [−0.288; 0.584]

ρ3,0 0.186 (0.222) 0.161 (0.183) 0 0
[−0.257; 0.560] [−0.226; 0.494]

ρ1,1 0.322 (0.182) 0.314 (0.177) 0 0
[−0.073; 0.621] [−0.073; 0.610]

ρ2,1 0.053 (0.195) 0.048 (0.182) 0 0
[−0.352; 0.414] [−0.318; 0.394]

ρ3,1 −0.079(0.273) −0.083(0.252) 0 0
[−0.580; 0.468] [−0.543; 0.412]

4. Discussion
We have proposed a Bayesian latent-class model for con-
struction of a diagnostic biomarker-index in the presence
of a dichotomous imperfect reference-test. Importantly, the
model does not require the conditional-independence assump-
tion because it explicitly allows for a correlation between the
results of the reference test and biomarkers.

The simulation study results showed adequate model
performance leading to unbiased estimates of the model
parameters. Moreover, the results showed that falsely assum-
ing conditional independence may lead to substantial bias
in the estimates of biomarker-index accuracy. The observed
overestimation of AUCa may be related to the substantial
overestimation of SpT and SeT . As suggested by one of the
reviewers, this can be explained by the model trying to cap-
ture the excess correlation of the conditional dependence by
increasing the imperfect reference-test sensitivity estimate.
Since the marginal positive rate for the reference test is fixed
together with a stable disease prevalence estimate, specificity
is overestimated as well. A similar observation was made for a
dichotomous test by Pepe and Janes (2007). A supplementary
simulation study showed that the proposed model is able to
accommodate bi-modal data, similar to those observed in the
ADNI data set.

For the VUmc data set, the chosen prior distributions for
SpT , SeT , θ, and AUCa addressed the model non-identifiability
issues. The form of the prior distribution for AUCa did not
affect the results. Interestingly, the model suggested depen-
dence between clinical diagnosis and Total-tau. Despite this,
there was not much difference in the posterior-median AUC

obtained under conditional independence or dependence. A
possible explanation could be that the bias in AUCa is too
small to be picked up by the model (Baker et al., 2014).
Another explanation could be that the importance of Total-
tau in the linear combination comprising the diagnostic index
is only limited (McKhann et al., 2011). In fact, the poste-
rior median for coefficient aTotal−tau was equal to 9.43 and
was smaller as compared to the medians for the two other
biomarkers (âAβ1−42 = 15.04; âP−tau181p = 21.92). It is also pos-
sible that the lack of difference for the conditional-dependence
analyses is due to a misspecification of the correlation struc-
ture in the former. In fact, Albert and Dodd (2004) showed
that estimates of the diagnostic-performance measures may be
biased if the conditional-dependence structure is misspecified
and it may be difficult to distinguish between different depen-
dence structures based on the observed data. However, these
conclusions were formulated for the case of multiple dichoto-
mous tests and a frequentist analysis. Bayesian approaches
based on good prior information may be less sensitive to this
issue, as also indicated by Albert and Dodd (2004).

For the ADNI data, convergence issues due to non-
identifiability were noted for the “conservative” AUCa-prior
distribution. They were resolved when the “intermediate” or
“optimistic” AUCa-priors were used. This indicates that the
use of the model may require a substantial sample size or, oth-
erwise, a substantial amount of prior information to provide
reliable results.

Although this was not anticipated, the underlying settings
of the simulations seem to mimic the results from the real-data
applications. Nevertheless, the results of the simulation study
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and real-data applications are different. The most important
difference is the overall accuracy of the combination which
is much better for the real-data applications. Moreover, the
substantial conditional dependence included in the simulation
study is affecting the estimates of AUCa, while this is not the
case in the real-data applications.

The proposed model explicitly assumes that biomarkers are
normally distributed in order to get a biomarker combination
which maximizes the AUC of the combination. The real-data
application shows that applying suitable transformation (e.g.,
a logarithmic one) can help in obtaining data that are com-
pliant with the assumption. Another solution would be to
include a Box–Cox transformation directly into the likelihood,
as proposed by, e.g., O’Malley and Zou (2006). Extending the
model along these lines remains a topic for further research.

To check whether valid inference could be obtained even
with a minimum of prior information, in the presented anal-
yses we used as uninformative prior distributions as possible.
Of course, as demonstrated in the real-data application, if
scientifically accepted prior information is available, it can
be used. While we have restricted ourselves to include infor-
mation on SpT , SeT , and θ, informative priors for other
parameters could be added as well if the application at hand
allows it. For example, in case of the particular application in
AD, Welge et al. (2009) present AUC estimates of the linear
combination of the three considered biomarkers.

Another extension of the model could be to allow inclu-
sion of continuous imperfect reference-test information. If
such information is available, one could think of summariz-
ing its accuracy information in terms of AUC and including
this information as a prior, using similar parameterization as
expressed in the Methods section.

5. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections
2, 3, and 4 are available with this article at the Biometrics
website on Wiley Online Library. OpenBUGS model-code for
the implementation of the proposed models is also available
with this article at the Biometrics website on Wiley Online
Library.
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